重庆市三峡名校联盟2022-2023学年高一数学上学期联考试题(Word版带答案)
资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
三峡名校联盟2022年秋季高2025届数学试题一、单项选择题(本大题共8题,每小题5分,共计40分,每小题列出的四个选项中只有一项是最符合题目要求的.)1、已知命题,则为( )A.B.C.D.2、已知函数是幂函数,且在上递减,则实数=( )A.-1B.2或1C.4D.23、,是第一象限角或第二象限角,则是的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4、下列散点图中,估计有可能用函数来模拟的是( )A.B.C.D.5、设则( )A.B.C.D.6、已知函数则( )A.是偶函数,且在是单调递增B.是奇函数,且在是单调递增C.是偶函数,且在是单调递减D.是奇函数,且在是单调递减7、若为奇函数,且是的一个零点,则是下列哪个函数的零点( )A.B.C.D.8、高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设用表示不超过的最大整数,则称为高斯函数,例如:已知函数,则函数的值域为()10
A.{-2,-1,0,1,2,3}B.{-1,0,1,2,3}C.{-1,0,2,3}D.{-2,-1,0,1,2}二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9、下列函数中,定义域为的函数是( )A.B.C.D.10、下列说法正确的是( )A.若,则B.若,则C.若则D.若则11、已知函数,则( )A.B.若C.D.12、已知,则下列说法正确的是( )A.B.C.D.三、填空题(本题共4小题,每小题5分,共20分.其中15题第一空2分,第二空3分.)13、请写出同时满足下列两个条件的函数____________.(1)在定义域内单调递增,(2)14、求的值为____________.15、设时钟时针长5,时间经过4小时30分钟。①分针转了多少度____________.(用角度制表示)②时针尖端所走过的弧长为____________.16、对于正整数,函数对于实数,记方程的不同实数解的个数为,求使得函数的最大值为4的所有正整数的和为____________.四、解答题(本题共6小题,17题10分,剩下每题12分,共70分。解答应写出文字说明、证明过程或演算步骤.)10
17、已知函数,.(1)求的最小正周期;(2)求的最大值和对应的取值;(3)求在的单调递增区间.18、在平面直角坐标系中,角的顶点坐标原点,始边为的非负半轴,终边经过点.(1)求的值;(2)求的值.19、在①不等式的解集为B,②不等式的解集为B.这两个条件中任选一个作为已知条件,补充在下面的问题中,并解决该问题.问题:设(1)当时,求;(2)若“”是“”的充分不必要条件,求的取值范围.10
20、已知函数,。(1)当求函数;(2)若函数(3)若函数21、习总书记指出:“绿水青山就是金山银山”.巫山县曲池乡响应号召,因地制宜地将该乡镇打造成“生态水果特色小镇”.调研过程中发现:纽荷尔树的单株产量(单位:)与肥料费用(单位:元)满足如下关系:,其他成本投入(如培育管理等人工费)为(单位:元).已知纽荷尔的市场售价大约为10元,且供不应求.记该单株水果树获得的利润为(单位:元).(1)求的函数关系式;(2)当投入的肥料费用为多少元时,该单株水果树获得的利润最大?最大利润是多少元?22、定义在上的函数,对任意的,恒有且时,有(1)判断的奇偶性并证明;(2)若,且对恒成立,求的取值范围;(3)若,函数有三个不同的零点,求的取值范围.10
三峡名校联盟2022年秋季高2025届数学参考答案及评分细则一、单项选择题12345678BDBCCBBA二、多项选择题9101112ACADABDABC12.ABC解:由可得:,,对于A:,所以,故选项A正确;对于B:,,即,所以,,即,所以,所以,,故选项B正确;对于C:,,所以,令,则在上单调递增,所以,故选项C正确;对于D:,,所以,,所以,故选项D不正确,故选:ABC.三、填空题13:(答案不唯一例:)14:1315:;16:33四、解答题10
17.解:(1).....2分(2)令则.....4分当函数最大值......6分(3)令。在上单调递增。,.......8分......10分18.解:(1)由题意,,.....2分,.....4分......6分......12分注:第一问6分,第二问6分.第二问化简4分,6个三角函数值错一个扣1分,直到扣完。如果第一问求了第二问可以不求.19.解:选①,,,,..选②,,,.10
.......3分(1)当时,,,.......6分(2)“”是“”的充分不必要条件,①,.......8分②或..综上所述:或.......12分注:第二问没取等号扣1分,20.解:,。(1)当,令定义域:令,.在单减,在单增。在单增.......2分单增区间:.......3分单减区间:.......4分(2)若函数,,......7分又........8分10
(3)函数,结合单调性和图像。...10分此时值域,.......12分21.解:(1)由题意可得,即,所以函数的函数关系式为.......5分(2)当时,为开口向上的抛物线,对称轴为,所以当时,......7分当时,,......10分当且仅当即时等号成立,此时,......11分综上所述:当投入的肥料费用为元时,单株水果树获得的利润最大为元.......12分.22.解:(1)令.令是奇函数.......2分10
(2)令则.不妨设,时,有,......4分令,则,令,则,.,,......5分设,.......6分......7分(3),令,则,........8分有三个不同的零点,10
且,①,......9分②......10分③综上所述:......12分10
版权提示
- 温馨提示:
- 1.
部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
- 2.
本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
- 3.
下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
- 4.
下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)