首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
初中
>
数学
>
北师大版(2012)
>
九年级下册
>
第一章 直角三角形的边角关系
>
5 三角函数的应用
>
北师大版九下数学1.5三角函数的应用2教案
北师大版九下数学1.5三角函数的应用2教案
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/5
2
/5
剩余3页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
1.5三角函数的应用教学目标(一)教学知识点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的应用.2.能够把实际问题转化为数学问题,能够借助于计算器进行有关三角函数的计算,并能对结果的意义进行说明.(二)能力训练要求发展学生的数学应用意识和解决问题的能力.(三)情感与价值观要求1.在经历弄清实际问题题意的过程中,画出示意图,培养独立思考问题的习惯和克服困难的勇气.2.选择生活中学生感兴趣的题材,使学生能积极参与数学活动,提高学习数学、学好数学的欲望.教具重点1.经历探索船是否有触礁危险的过程,进一步体会三角函数在解决问题过程中的作用.2.发展学生数学应用意识和解决问题的能力.教学难点根据题意,了解有关术语,准确地画出示意图.教学方法探索——发现法教具准备多媒体演示教学过程Ⅰ.创设问题情境,引入新课[师]直角三角形就像一个万花筒,为我们展现出了一个色彩斑澜的世界.我们在欣赏了它神秘的“勾股”、知道了它的边的关系后,接着又为我们展现了在它的世界中的边角关系,它使我们现实生活中不可能实现的问题,都可迎刃而解.它在航海、工程等测量问题中有着广泛应用,例如测旗杆的高度、树的高度、塔高等.下面我们就来看一个问题(多媒体演示).海中有一个小岛A,该岛四周10海里内有暗礁.今有货轮由西向东航行,开始在A岛南偏西55°的B处,往东行驶20海里后,到达该岛的南偏西25°的C处,之后,货轮继续往东航行,你认为货轮继续向东航行途中会有触礁的危险吗?你是如何想的?与同伴进行交流.下面就请同学们用锐角三角函数知识解决此问题.(板书:船有触礁的危险吗)Ⅱ.讲授新课[师]我们注意到题中有很多方位,在平面图形中,方位是如何规定的?[生]应该是“上北下南,左西右东”.[师]请同学们根据题意在练习本上画出示意图,然后说明你是怎样画出来的.[生]首先我们可将小岛A确定,货轮B在小岛A的南偏西55°的B处,C在B的正东方,且在A南偏东25°处.示意图如下. [师]货轮要向正东方向继续行驶,有没有触礁的危险,由谁来决定?[生]根据题意,小岛四周10海里内有暗礁,那么货轮继续向东航行的方向如果到A的最短距离大于10海里,则无触礁的危险,如果小于10海里则有触礁的危险.A到BC所在直线的最短距离为过A作AD⊥BC,D为垂足,即AD的长度.我们需根据题意,计算出AD的长度,然后与10海里比较.[师]这位同学分析得很好,能将实际问题清晰条理地转化成数学问题.下面我们就来看AD如何求.根据题意,有哪些已知条件呢?[生]已知BC°=20海里,∠BAD=55°,∠CAD=25°.[师]在示意图中,有两个直角三角形Rt△ABD和Rt△ACD.你能在哪一个三角形中求出AD呢?[生]在Rt△ACD中,只知道∠CAD=25°,不能求AD.[生]在Rt△ABD中,知道∠BAD=55°,虽然知道BC=20海里,但它不是Rt△ABD的边,也不能求出AD.[师]那该如何是好?是不是可以将它们结合起来,站在一个更高的角度考虑?[生]我发现这两个三角形有联系,AD是它们的公共直角边.而且BC是这两个直角三角形BD与CD的差,即BC=BD-CD.BD、CD的对角是已知的,BD、CD和边AD都有联系.[师]有何联系呢?[生]在Rt△ABD中,tan55°=,BD=ADtan55°;在Rt△ACD中,tan25°=,CD=ADtan25°.[生]利用BC=BD-CD就可以列出关于AD的一元一次方程,即ADtan55°-ADtan25°=20.[师]太棒了!没想到方程在这个地方帮了我们的忙.其实,在解决数学问题时,很多地方都可以用到方程,因此方程思想是我们初中数学中最重要的数学思想之一.下面我们一起完整地将这个题做完.[师生共析]解:过A作BC的垂线,交BC于点D.得到Rt△ABD和Rt△ACD,从而BD=ADtan55°,CD=ADtan25°,由BD-CD=BC,又BC=20海里.得ADtan55°-ADtan25°=20.AD(tan55°-tan25°)=20,AD=≈20.79(海里).这样AD≈20.79海里>10海里,所以货轮没有触礁的危险.[师]接下来,我们再来研究一个问题.还记得本章开头小明要测塔的高度吗?现在我们来看他是怎样测的,并根据他得到的数据帮他求出塔的高度.多媒体演示想一想你会更聪明: 如图,小明想测量塔CD的高度.他在A处仰望塔顶,测得仰角为30°,再往塔的方向前进50m至B处.测得仰角为60°.那么该塔有多高?(小明的身高忽略不计,结果精确到1m)[师]我想请一位同学告诉我什么是仰角?在这个图中,30°的仰角、60°的仰角分别指哪两个角?[生]当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角.30°的仰角指∠DAC,60°的仰角指∠DBC.[师]很好!请同学们独立思考解决这个问题的思路,然后回答.(教师留给学生充分的思考时间,感觉有困难的学生可给以指导)[生]首先,我们可以注意到CD是两个直角三角形Rt△ADC和Rt△BDC的公共边,在Rt△ADC中,tan30°=,即AC=在Rt△BDC中,tan60°=,即BC=,又∵AB=AC-BC=50m,得-=50.解得CD≈43(m),即塔CD的高度约为43m.[生]我有一个问题,小明在测角时,小明本身有一个高度,因此在测量CD的高度时应考虑小明的身高.[师]这位同学能根据实际大胆地提出质疑,很值得赞赏.在实际测量时.的确应该考虑小明的身高,更准确一点应考虑小明在测量时,眼睛离地面的距离.如果设小明测量时,眼睛离地面的距离为1.6m,其他数据不变,此时塔的高度为多少?你能画出示意图吗?[生]示意图如右图所示,由前面的解答过程可知CC′≈43m,则CD=43+1.6=44.6m.即考虑小明的高度,塔的高度为44.6m.[师]同学们的表现太棒了.现在我手里有一个楼梯改造工程问题,想请同学们帮忙解决一下.多媒体演示:某商场准备改善原来楼梯的安全性能,把倾角由40°减至35°,已知原楼梯长为4m,调整后的楼梯会加长多少?楼梯多占多长一段地面?(结果精确到0.0lm)请同学们根据题意,画出示意图,将这个实际问题转化成数学问题,(先独立完成,然后相互交流,讨论各自的想法) [生]在这个问题中,要注意调整前后的梯楼的高度是一个不变量.根据题意可画㈩示意图(如右图).其中AB表示楼梯的高度.AC是原楼梯的长,BC是原楼梯的占地长度;AD是调整后的楼梯的长度,DB是调整后的楼梯的占地长度.∠ACB是原楼梯的倾角,∠ADB是调整后的楼梯的倾角.转化为数学问题即为:如图,AB⊥DB,∠ACB=40°,∠ADB=35°,AC=4m.求AD-AC及DC的长度.[师]这位同学把这个实际楼梯调整问题转化成了数学问题.大家从示意图中不难看出这个问题是前面问题的变式.我相信同学们一定能用计算器辅助很快地解决它,开始吧![生]解:由条件可知,在Rt△ABC中,sin40°=,即AB=4sin40°m,原楼梯占地长BC=4cos40°m.调整后,在Rt△ADB中,sin35°=,则AD=m.楼梯占地长DB=m.∴调整后楼梯加长AD-AC=-4≈0.48(m),楼梯比原来多占DC=DB-BC=-4cos40°≈0.61(m).Ⅲ.随堂练习1.如图,一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且DB=5m,现再在C点上方2m处加固另一条钢缆ED,那么钢缆ED的长度为多少?解:在Rt△CBD中,∠CDB=40°,DB=5m,sin40°=,BC=DBsin40°=5sin40°(m).在Rt△EDB中,DB=5m,BE=BC+EC=2+5sin40°(m).根据勾股定理,得DE=≈7.96(m).所以钢缆ED的长度为7.96m.2.如图,水库大坝的截面是梯形ABCD,坝顶AD=6m,坡长CD=8m.坡底BC=30m,∠ADC=135°.(1)求∠ABC的大小:(2)如果坝长100m.那么建筑这个大坝共需多少土石料?(结果精确到0.01m3)解:过A、D分别作AE⊥BC,DF⊥BC,E、F为垂足. (1)在梯形ABCD中.∠ADC=135°,∴∠FDC=45°,EF=AD=6m.在Rt△FDC中,DC=8m.DF=FC=CD.sin45°=4(m).∴BE=BC-CF-EF=30-4-6=24-4(m).在Rt△AEB中,AE=DF=4(m).tanABC=≈0.308.∴∠ABC≈17°8′21″.(2)梯形ABCD的面积S=(AD+BC)×AE=(6+30)×4=72(m2).坝长为100m,那么建筑这个大坝共需土石料100×72≈10182.34(m3).综上所述,∠ABC=17°8′21″,建筑大坝共需10182.34m3土石料.Ⅳ.课时小结。
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
2021北师大版三上数学1.5带有小括号的两步混合运算及其应用(1)课件
2021北师大版六上数学1.5圆的周长(1)课件
2021北师大版五上数学1.5除数是小数的小数除法(2)课件
北师大版九下数学1.5三角函数的应用课件
北师大版九下数学1.2 30°,45°,60°角的三角函数值2教案
北师大版九下数学1.3三角函数的计算2教案
北师大版九下数学1.5三角函数的应用1教案
北师大版九下数学1.5三角函数的应用2教案
北师大版九下数学1.6利用三角函数测高2教案
湘教版(2022)八年级数学上册教案:1.5第2课时 分式方程的应用
文档下载
收藏
所属:
初中 - 数学
发布时间:2023-02-16 19:50:03
页数:5
价格:¥1
大小:705.67 KB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划