首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
初中
>
数学
>
北师大版(2012)
>
八年级下册
>
第一章 三角形的证明
>
1 等腰三角形
>
北师大版八下数学1.1第1课时等腰三角形的性质课件
北师大版八下数学1.1第1课时等腰三角形的性质课件
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/23
2
/23
3
/23
4
/23
剩余19页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
1.1等腰三角形第一章三角形的证明第1课时三角形的全等和等腰三角形的性质 情境引入问题1:图中有你熟悉的图形吗?它们有什么共同特点?斜拉桥梁埃及金字塔体育观看台架 问题2:建筑工人在盖房子时,用一块等腰三角板放在梁上,在顶点处系一重物,如果系重物的绳子正好经过三角板底边中点,就说房梁是水平的,你知道其中体现了什么数学原理吗?七下“轴对称”中学过的等腰三角形的“三线合一”.思考:你能证明等腰三角形的“三线合一”吗? 问题3在八上的“平行线的证明”这一章中,我们学了哪8条基本事实?1.两点确定一条直线.2.两点之间线段最短.3.同一平面内,过一点有且只有一条直线与已知直线垂直.4.同位角相等,两直线平行.5.过直线外一点有且只有一条直线与这条直线平行.6.两边及其夹角分别相等的两个三角形全等.7.两角及其夹边分别相等的两个三角形全等.8.三边分别相等的两个三角形全等. 定理两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS).问题:你能运用基本事实及已经学过的定理证明上面的推论吗?弄清楚证明一个命题的一般步骤是解题的关键证明一个命题的一般步骤:(1)弄清题设和结论;(2)根据题意画出相应的图形;(3)根据题设和结论写出已知和求证;(4)分析证明思路,写出证明过程.全等三角形的判定和性质 已知:如图,∠A=∠D,∠B=∠E,BC=EF.求证:△ABC≌△DEF.证明:∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形的内角和等于180°),∴∠C=180°-(∠A+∠B),∠F=180°-(∠D+∠E).∵∠A=∠D,∠B=∠E(已知),∴∠C=∠F(等量代换).∵BC=EF(已知),∴△ABC≌△DEF(ASA).FEDCBA 总结归纳定理两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS).根据全等三角形的定义,我们可以得到:全等三角形的对应边相等,对应角相等. 问题1:你还记得我们探索过的等腰三角形的性质吗?推论:等腰三角形顶角的平分线,底边上的中线,底边上的高互相重合(三线合一).问题2:你能利用基本事实或已知的定理证明这些结论吗?定理:等腰三角形的两个底角相等.问题引入等腰三角形的性质及其推论 ABC已知:△ABC中,AB=AC.求证:∠B=∠C.思考:如何构造两个全等的三角形?定理:等腰三角形的两个底角相等(等边对等角).可以运用全等三角形的性质“对应角相等”来证如何证明两个角相等呢? 议一议:在七下学习轴对称时,我们利用折叠的方法说明了等腰三角形是轴对称图形,且两个底角相等,如下图,实际上,折痕将等腰三角形分成了两个全等的三角形.由此,你得到了解题什么的启发? 已知:如图,在△ABC中,AB=AC.求证:∠B=∠C.ABCD证明:作底边的中线AD,则BD=CD.AB=AC(已知),BD=CD(已作),AD=AD(公共边),∴△BAD≌△CAD(SSS).∴∠B=∠C(全等三角形的对应角相等).在△BAD和△CAD中,方法一:作底边上的中线还有其他的证法吗? 已知:如图,在△ABC中,AB=AC.求证:∠B=∠C.ABCD证明:作顶角的平分线AD,则∠BAD=∠CAD.AB=AC(已知),∠BAD=∠CAD(已作),AD=AD(公共边),∴△BAD≌△CAD(SAS).∴∠B=∠C(全等三角形的对应角相等).方法二:作顶角的平分线在△BAD和△CAD中, 想一想:由△BAD≌△CAD,除了可以得到∠B=∠C之外,你还可以得到哪些相等的线段和相等的角?和你的同伴交流一下,看看你有什么新的发现?由△BAD≌△CAD,可得BD=CD,∠ADB=∠ADC,∠BAD=∠CAD.又∵∠ADB+∠ADC=180°,∴∠ADB=∠ADC=90°,即AD⊥BC.故AD是等腰△ABC底边BC上的中线、顶角∠BAC的平分线、底边BC上的高线.ABCD 定理:等腰三角形的两个底角相等(等边对等角).ACB如图,在△ABC中,∵AB=AC(已知),∴∠B=∠C(等边对等角).证明后的定理和推论,以后可以直接运用.总结归纳推论:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合(三线合一). ACBD12∵AB=AC,∠1=∠2(已知),∴BD=CD,AD⊥BC(等腰三角形三线合一).∵AB=AC,BD=CD(已知),∴∠1=∠2,AD⊥BC(等腰三角形三线合一).∵AB=AC,AD⊥BC(已知),∴BD=CD,∠1=∠2(等腰三角形三线合一).综上可得:如图,在△ABC中, ABCD例1如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数.典例精析分析:(1)找出图中所有相等的角;(2)指出图中有几个等腰三角形;∠A=∠ABD,∠C=∠BDC=∠ABC.△ABC,△ABD,△BCD. ABCDx⌒2x⌒2x⌒⌒2x(3)观察∠BDC与∠A、∠ABD的关系,∠ABC、∠C呢?∠BDC=∠A+∠ABD=2∠A=2∠ABD,∠ABC=∠BDC=2∠A,∠C=∠BDC=2∠A.(4)设∠A=x°,请把△ABC的内角和用含x的式子表示出来.∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°. ABCD解:∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD.设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x,于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°,在△ABC中,∠A=36°,∠ABC=∠C=72°.x⌒2x⌒2x⌒⌒2x在含多个等腰三角形的图形中求角时,常常利用方程思想,通过内角、外角之间的关系进行转化求解.归纳 例2如图①,点D、E在△ABC的边BC上,AB=AC.(1)若AD=AE,求证:BD=CE;(2)若BD=CE,F为DE的中点,如图②,求证:AF⊥BC.分析:(1)过A作AG⊥BC于G,根据等腰三角形的性质得出BG=CG,DG=EG即可证明;(2)先证BF=CF,再根据等腰三角形的性质证明.图①图②ABDGECABDECF 证明:(1)如图①,过A作AG⊥BC于G.∵AB=AC,AD=AE,∴BG=CG,DG=EG.∴BG-DG=CG-EG,即BD=CE.(2)∵BD=CE,F为DE的中点,∴BD+DF=CE+EF,∴BF=CF.∵AB=AC,∴AF⊥BC.图①图②ABDGECABDECF 1.如图,已知AB=AE,∠BAD=∠CAE,要使△ABC≌△AED,还需添加一个条件,这个条件可以是________________________.∠C=∠D(答案不唯一) 2.(1)等腰三角形一个底角为75°,它的另外两个角为__________;(2)等腰三角形一个角为36°,它的另外两个角为______________________;(3)等腰三角形一个角为120°,它的另外两个角为________.75°,30°72°,72°,或36°,108°30°,30°结论:在等腰三角形中,注意对角的分类讨论.①顶角+2×底角=180°②顶角=180°-2×底角③底角=(180°-顶角)÷2④0°<顶角<180°⑤0°<底角<90° 等腰三角形的性质等边对等角三线合一注意是指同一个三角形中注意是指顶角的平分线,底边上的高和中线才有这一性质.而腰上高、中线和底角的平分线不具有这一性质.定理两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS).全等三角形的对应边相等,对应角相等.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
1.1 等腰三角形第1课时等腰三角形的性质课件
湘教版八下数学1.1 第1课时直角三角形的性质和判定课件
19.2菱形1第1课时菱形的性质课件(华师大版八下)
5.1第2课时分式的基本性质课件(北师大版八下数学)
5.3第1课时等腰三角形的性质课件(北师大版七下数学)
22.4第1课时矩形的性质课件(冀教版版八下数学)
22.5第1课时菱形的性质课件(冀教版版八下数学)
北师大版八下数学1.1第1课时三角形的全等和等腰三角形的性质教案
北师大版八下数学1.1第2课时等边三角形的性质教案
北师大版八下数学1.1第3课时等腰三角形的判定与反证法教案
文档下载
收藏
所属:
初中 - 数学
发布时间:2023-02-16 19:41:01
页数:23
价格:¥3
大小:5.23 MB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划