首页

2023高考数学新教材数列十大微专题5-数列中的计数问题(Word版附解析)

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/4

2/4

剩余2页未读,查看更多内容需下载

数列中的计数问题原理与应用一.基本原理1.数列中的计数问题的基本形式如下:记数列落在区间的个数为,讨论数列的性质.这种问题的关键就是利用数列自变量的计数功能,通过不等式,由于为正整数,从而实现对自变量的计数,当然,这里面需要一丝丝取整背景,需要读者注意.进一步:目前的题目的计算背景主要分布在去解下面三个不等式:①.②.③.2.高斯取整函数:表示实数的整数部分,即是不大于实数的最大整数.,常称为的“小数部分”或“尾数部分”.3.高斯函数图像及小数部分图像.取整函数的图象.小数函数:的图象性质:①定义域:;性质:①定义域:;②值域:;②值域:; 下面我们通过例子分析.二.典例分析例1.在等差数列中,.(1)求数列的通项公式;(2)对任意,将数列中落入区间内的项的个数记为,求数列的前项和.解析:(1)由可得而,则,,于是,即.(2)对任意m∈N﹡,,则,即,而,故,由题意可知,于是,即.例2.已知等差数列的前5项和为105,且.(1)求数列的通项公式;(2)对任意,将数列中不大于的项的个数记为.求数列的前m项和.解析:(1)由已知得:解得,所以通项公式为.(2)由,得,即.∵,∴是公比为49的等比数列,∴. 例3.(2020新高考1卷)已知公比大于的等比数列满足.(1)求的通项公式;(2)记为在区间中的项的个数,求数列的前项和.解析:(1)由于数列是公比大于的等比数列,设首项为,公比为,依题意有,解得解得,或(舍),所以,所以数列的通项公式为.(2)由题意,,即,当时,.当时,,则.例4.(2022新高考1卷)已知为等差数列,是公比为2的等比数列,且(1)证明:;(2)求集合中元素的个数.解析:(1)设等差数列公差为,由,知,故,由,知,故;故,整理得,得证.(2)由(1)知,由知:即,即,因为,故,解得故集合中元素的个数为9个. 三.习题演练1.(2023届温州一模)已知数列是等差数列,,且,,成等比数列.给定,记集合的元素个数为.(1)求,的值;(2)求最小自然数n的值,使得.解析:(1)设数列的公差为,由,,成等比数列,得,,解得,所以,时,集合中元素个数为,时,集合中元素个数为;(2)由(1)知,,时,=2001<2022,时,=4039>2022,记,显然数列是递增数列,所以所求的最小值是11.习题2.已知公比大于的等比数列满足.(1)求的通项公式;(2)记为在区间中的项的个数,求数列的前项和.解析:(1)由于数列是公比大于的等比数列,设首项为,公比为,依题意有,解得解得,或(舍),所以,所以数列的通项公式为.(2)由题意,,即,当时,.当时,,则.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2023-02-09 08:36:03 页数:4
价格:¥3 大小:266.01 KB
文章作者:随遇而安

推荐特供

MORE