首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
山东省德州市烟台市2022-2023学年高一数学上学期期中考试试题(Word版含答案)
山东省德州市烟台市2022-2023学年高一数学上学期期中考试试题(Word版含答案)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/9
2
/9
剩余7页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
2022-2023学年度第一学期期中学业水平诊断高一数学第Ⅰ卷(共60分)一、选择题(本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.)1.已知集合,,则()A.B.C.D.2.已知x,,则“x和y均为有理数”是“xy为有理数”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.下列各组函数中,表示同一函数的是()A.,B.,C.,D.,4.已知a,b,c,,则下列命题中正确的是()A.若,则B.若,,则C.若,,则D.若,,则5.已知函数若,则是()A.奇函数,在和单调递增B.奇函数,在和单调递减C.偶函数,在单调递增,在单调递减D.偶函数,在单调递减,在单调递增6.已知函数若,则()A.-4B.-1C.-4或-1D.-4或 7.定义在R上的函数满足:①,②,③,则不等式的解集是()A.B.C.D.8.已知,,且,若不等式恒成立,则实数m的取值范围为()A.B.C.或D.或二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.若集合,且,则集合A可能是()A.B.C.D.10.已知函数,,设函数则()A.是偶函数B.方程有四个实数根C.在区间上单调递增D.有最大值,没有最小值11.已知,,且,则()A.B.C.D.12.已知函数的定义域为R,对任意的实数x,y,有,且当时,,则()A.B.对任意的,恒成立C.函数在上单调递增D.若,则不等式的解集为 第Ⅱ卷(共90分)三、填空题(本题共4小题,每小题5分,共20分.)13.已知集合,,则B中元素的个数为______.14.若命题“,”是假命题,则实数m的取值范围是______.15.已知,且,则的最小值为______.16.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的美誉,函数称为高斯函数,其中,表示不超过x的最大整数,例如:,.①若函数,则的值域为______;②若函数,则方程所有的解为______.(本题第一空2分,第二空3分.)四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分10分)已知函数的定义域为集合A,集合.(1)求集合A;(2)请在下面这两个条件中任选一个,补充在横线处,并给出问题的解答.①充分条件,②必要条件.是否存在实数m,使得是的______?若存在,求出m的取值范围;若不存在,请说明理由.注:如果选择多个条件分别解答,按第一个解答计分.18.(本小题满分12分)已知是定义在R上的偶函数,当时,.(1)求的解析式;(2)求不等式的解集.19.(本小题满分12分)已知函数,二次函数满足,且不等式 的解集为.(1)求,的解析式;(2)设,根据定义证明:在上为增函数.20.(本小题满分12分)已知某企业原有职工500人,每人每年可为企业创利6.5万元.为应对新冠疫情给企业带来的不利影响,该企业决定实施减员增效策略,分流出一部分职工待岗,待岗人数不超过原有职工的4%,并且每年给每位待岗职工发放生活补贴0.5万元.据评估,当待岗职工人数x不超过原有职工2%时,留岗职工每人每年可为企业多创利万元;当待岗职工人数x超过原有职工2%时,留岗职工每人每年可为企业多创利0.96万元.设该企业实施减员增效策略后,年利润为y(单位:万元)..(1)求y关于x的函数关系式;(2)为使企业的年利润y最大,应安排多少职工待岗?21.(本小题满分12分)已知函数的定义域为R,且对任意的实数x,y,满足.(1)证明:;(2)著名数学家柯西在十九世纪上半叶研究过上述函数的性质,且证明了当该函数的图象在R上连续不断时,.若函数的图象在R上连续不断,对任意x,,,.设.①证明:;②已知,求在上的最小值.22.(本小题满分12分)给定,若存在实数使得成立,则定义为的点.已知函数.(1)当,时,求的点;(2)设,,若函数在上存在两个相异的点,求实数t 的取值范围;(3)对于任意的,总存在,使得函数存在两个相异的点,求实数t的取值范围.2022-2023学年度第一学期期中学业水平诊断高一数学参考答案一、选择题(本题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的.)1.B2.A3.D4.D5.C6.A7.A8.B二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.AC10.ABD11.ACD12.BCD三、填空题(本题共4小题,每小题5分,共20分.)13.314.15.16.①②四、解答题(本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.)17.解:(1)由题可知,即,解得,故集合.(2)若选择条件①:即是充分条件,则集合A是集合B的子集,所以,解得,所以实数m的取值范围为.若选择条件②:即是必要条件,则集合B是集合A的子集,所以,解得,故实数m的取值范围为. [未注明,扣1分]18.解:(1)设,则,,又是偶函数,所以.综上,(2)由题可知在上单调递增.又因为是偶函数,故.解得,所以不等式的解集为.19.解:(1)令,则,所以,即.设,因为的解集为,所以,即.又,解得,,,即.(2)由题可知,.任取,,且.因为,所以.又因为,,所以,从而. 所以,即.所以在上为增函数.20.解:(1)由题可知:,,所以且.当待岗人数不超过2%,即时,,当待岗人数超过2%,即时,故(2)当且时,,当且仅当,即时,等号成立.当时,为减函数,所以当时,.因为,所以当企业年利润最大时,应安排5人待岗.21.(1)证明:令,得.(2)①因为,且,所以 .②因为的图象在R上连续不断,所以的图象在R上连续不断,又,结合题目条件可知,.又,所以.从而.的对称轴为.当时,在上单调递减,所以,当时,;当时,在上单调递减,在上单调递增,所以,当时,;综上,当时,取最小值,当时,取最小值-1.22.解:(1)当,时,,由题意知.即,解得或.所以,当,时,的点为1和3;(2)由已知得在上有两个不同实数解,即在上有两个不同实数解,令,因为,所以解得,所以t的范围是. (3)因为函数存在两个相异的点,所以方程,即恒有两个不等实根,所以,即,对任意的,总存在使之成立,即,即.(*)令,则,(*)式变为.令,当时,,,显然成立.当时,在单调递减,在单调递增,所以当时,的最大值在区间的端点处取得.所以,或.当,即时,解得或;当,即时,解得或.综上,或.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
山东省德州市烟台市2022-2023学年高一数学上学期期中考试试题(Word版含答案)
文档下载
收藏
所属:
高中 - 数学
发布时间:2023-02-09 08:19:01
页数:9
价格:¥2
大小:505.61 KB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划