首页
登录
字典
词典
成语
近反义词
字帖打印
造句
组词
古诗
谜语
书法
文言文
歇后语
三字经
百家姓
单词
翻译
会员
投稿
首页
同步备课
小学
初中
高中
中职
试卷
小升初
中考
高考
职考
专题
文库资源
您的位置:
首页
>
试卷
>
高中
>
数学
>
河南省2022-2023学年高一数学上学期期中试卷(Word版含解析)
河南省2022-2023学年高一数学上学期期中试卷(Word版含解析)
资源预览
文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。
侵权申诉
举报
1
/18
2
/18
剩余16页未读,
查看更多内容需下载
充值会员,即可免费下载
文档下载
学校:___________姓名:___________考场:___________考号:___________河南省高一年级阶段性考试注意事项1、答题前,考生先将自己的姓名、准考证号码填写清楚。2、请将准考证条码粘贴在右侧的[条码粘贴处]的方框内3、选择题必须使用2B铅笔填涂;非选择题必须用0.5毫米黑色字迹的签字笔填写,字体工整4、请按题号顺序在各题的答题区内作答,超出范围的答案无效,在草纸、试卷上作答无效。5、保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀。6、填涂样例正确[■]错误[--][√][×]数学试卷考生二维码(正面朝上贴在此虚线框内)选择、填空涂卡区1、[A][B][C][D]2、[A][B][C][D]3、[A][B][C][D]4、[A][B][C][D]5、[A][B][C][D]6、[A][B][C][D]7、[A][B][C][D]8、[A][B][C][D]9、[A][B][C][D]10、[A][B][C][D]11、[A][B][C][D]12、[A][B][C][D]13__________14._________15.____________16._________一、单选题1.满足,且中的集合M的个数是( )A.16B.24C.28D.302.集合或,若,则实数的取值范围是( )A.B.C.D.3.已知,,且,则的最小值为( )A.2B.3C.4D.84.已知不等式的解集是则不等式的解集是( )A.B.C.D.5.设,则的值是( ) A.4B.2C.0D.6.已知函数,若,恒有,则实数a的取值范围为( )A.B.C.D.7.若定义在上的函数满足:,且,则下列结论中错误的是( )A.B.C.D.8.已知函数,若对任意恒成立,则实数的最小值为( )A.B.C.D.二、多选题9.对任意实数a,b,c,下列命题为真命题的是( )A.“”是“”的充要条件B.“”是“”的充分不必要条件C.“”是“”的必要不充分条件D.“”是“”的充分不必要条件10.已知,关于一元二次不等式的解集中有且仅有3个整数,则的值可以是( )A.6B.7C.8D.911.已知函数,.记,则下列关于函数的说法正确的是( )A.当时,B.函数的最小值为C.函数在上单调递减D.若关于的方程恰有两个不相等的实数根,则或12.如图,某池塘里浮萍的面积(单位:)与时间(单位:月)的关系为,关于 下列说法正确的是( )A.浮萍每月的增长率为3B.浮萍每月增加的面积都相等C.第4个月时,浮萍面积超过D.若浮萍蔓延到所经过的时间分别是,则三、填空题13.已知p:x>a是q:2<x<3的必要不充分条件,则实数a的取值范围是______.14.函数的定义域是__________.15.已知函数若函数在上不是增函数,则a的一个取值为___________.16.某小型服装厂生产一种风衣,日销货量件(单位:件)(∈N*)与货价p(单位:元/件)之间的关系为p=160-2,生产x件所需成本C=100+30(单位:元),当工厂日获利不少于1000元时,该厂日产量最少生产风衣的件数是___________四、解答题17.计算(1) (2)化简.18.已知全集,集合.(1)若且,求实数的值;(2)设集合,若的真子集共有3个,求实数的值.19.已知函数(1)用定义法证明函数在上单调递减(2)求时,函数的值域 20.设函数且是定义域为的奇函数;(1)若,判断的单调性并求不等式的解集;(2)若,且,求在上的最小值.21.某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入,政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益、养鸡的收益与投入(单位:万元)满足,.设甲合作社的投入为(单位:万元),两个合作社的总收益为(单位:万元).(1)当甲合作社的投入为25万元时,求两个合作社的总收益;(2)如何安排甲、乙两个合作社的投入,才能使总收益最大,最大总收益为多少万元? 22.已知函数为奇函数(1)求实数m的值;(2)判断函数在定义域上的单调性,并用单调性定义加以证明;(3)解关于的不等式. 河南省高一年级阶段性考试数学试卷答案1.B【分析】讨论元素与集合的关系,结合元素1、2、3与集合的可能情况求集合的个数.【详解】若时,则1、2、3可能属于,而5不属于,故集合共有种可能;若时,则1、2、3可能属于,而4不属于,故集合共有种可能;若时,则1、2、3可能属于,故集合共有种可能;综上,集合M的个数是24.故选:B2.A【分析】根据,分和两种情况讨论,建立不等关系即可求实数的取值范围.【详解】,①当时,即无解,此时,满足题意.②当时,即有解,当时,可得,要使,则需要,解得.当时,可得,要使,则需要,解得,综上,实数的取值范围是.故选:A.3.C 【分析】根据条件,变形后,利用均值不等式求最值.【详解】因为,所以.因为,,所以,当且仅当,时,等号成立,故的最小值为4.故选:C4.A【分析】根据不等式的解集可得对应方程的解,从而可求出的值,再解不含参数的一元二次不等式即可得解.【详解】∵不等式的解集是,∴是方程的两根,∴,解得.∴不等式为,解得,∴不等式的解集为.故选:A.5.A【分析】由分段函数解析式,结合有,即周期为2,得即可求值.【详解】由题设,.故选:A 6.B【分析】函数恒成立问题,直接求最值利用二次函数的性质可得;或利用参变分离法,利用基本不等式求最值即得.【详解】解法一:若,恒有,只需,设函数在上的最小值为,则(1)当,即时,,即,所以;(2)当,即时,,即,所以此时不满足题意;(3)当,即时,,所以,即,得,则.综上,实数的取值范围为.故选:B.解法二:若,恒有,即对任意恒成立,所以对任意的恒成立,而,当且仅当,即时取等号,所以.因此,实数的取值范围是.故选:B.7.C【分析】根据题意条件和,可对此式子赋值验证选项,即可完成求解.【详解】由已知可得函数的定义域为,满足①,且,对于选项A,可令,代入①式,得,得,所以A选项是正确的;对于选项B,可令,代入①式,得,得,所以B选项是正确的;对于选项C,可令,代入①式,得,而得 ,可令代入①式,得,整理得,所以C选项是错误的;对于选项D,可令,代入①式,得,而得,可令代入①式,得,整理得,所以D选项是正确的.故选:C.8.D【分析】先利用函数的解析式判断出函数关于点对称,从而将对任意恒成立,转化为对任意恒成立,再利用导数判断函数的单调性,利用单调性去掉“”,从而得到对任意恒成立,进行参变量分离后再利用换元法以及基本不等式求解最值,即可得到的最小值.【详解】因为函数,所以,则函数关于点对称,所以,故对任意恒成立,即对任意恒成立,即对任意恒成立,因为,则函数在上单调递增,所以对任意恒成立,令,则,所以对任意恒成立,因为,当且仅当,即时取等号, 所以,则实数的最小值为.故选:.【点睛】不等式恒成立问题常见方法:①分离参数恒成立(即可)或恒成立(即可);②数形结合(图象在上方即可);③讨论最值或恒成立;④讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围.9.CD【分析】根据等式或不等式的性质结合,结合充分必要条件的定义即可求解.【详解】对于A,根据等式的性质,由可以推出,当时,推不出,所以“”是“”的充分不必要条件,故A错误;对于B,如,但,所以推不出,如,但,所以推不出,所以“”是“”的既不充分也不必要条件,故B错误;因为若则一定成立,但若则不一定成立,所以“”是“”的必要不充分条件,故C正确;由得,,由可推出,不能推出,所以是的充分不必要条件,即”是“”的充分不必要条件,故D正确;故选:CD.10.ABC【分析】利用对应二次函数的性质,结合题设不等式解集仅有3个整数可得求a的范围,即知其可能值.【详解】由开口向上且对称轴为, ∴要使题设不等式解集有且仅有3个整数,则,解得,∴的可能值A、B、C.符合.故选:ABC.11.ABD【分析】得到函数,作出其图象逐项判断.【详解】由题意得:,其图象如图所示:由图象知:当时,,故A正确;函数的最小值为,故正确;函数在上单调递增,故错误;方程恰有两个不相等的实数根,则或,故正确;故选:ABD12.CD【分析】先根据图象,代入点,求出函数解析式,进而求出前3个月的浮萍面积,判断出AB选项, 计算出第4个月的浮萍面积,判断出C正确;解出,从而得到,D正确.【详解】由图可知,函数过点,将其代入解析式,,故,A选项,取前3个月的浮萍面积,分别为3,9,27,故增长率逐月增大,A错误;从前3个月浮萍面积可看出,每月增加的面积不相等,B错误;第4个月的浮萍面积为81,超过了80,C正确;令,,,解得:,,D正确.故选:CD13.【分析】根据充分性和必要性,求得参数的取值范围,即可求得结果.【详解】因为p:x>a是q:2<x<3的必要不充分条件,故集合为集合的真子集,故只需.故答案为:.14.【分析】直接列不等式即可求得.【详解】要使函数有意义,只需,解得:所以函数的定义域是.故答案为:15.-2(答案不唯一,满足或即可) 【分析】作出y=x和y=的图象,数形结合即可得a的范围,从而得到a的可能取值.【详解】y=x和y=的图象如图所示:∴当或时,y=有部分函数值比y=x的函数值小,故当或时,函数在上不是增函数.故答案为:-2.16.10【分析】由题意,设该厂月获利为元,获利=总收入-成本,即,求解二次不等式即可.【详解】由题意,设该厂月获利为元,则:,当工厂日获利不少于1000元时,即,即,解得:.故该厂日产量最少生产风衣的件数是10.故答案为:1017.(1)(2)【分析】(1)根据指数幂的运算法则逐步计算即可;(2)将根式化为分数指数幂,再利用指数幂的运算法则化简即可.(1) 原式(2)原式=18.(1);(2)【分析】(1)先化简集合,得到,根据可得到的值,并用进行检验即可;(2)分和两种情况进行分类讨论,即可得到答案【详解】(1)由题意,,所以,若,则或,解得或,又,所以;(2)因为,当时,,此时集合共有1个真子集,不符合题意;当即时,,此时集合共有3个真子集,符合题意,综上所述,19.(1)证明见解析(2)【分析】(1)利用函数单调性的定义,结合作差,可得答案;(2)由(1)的单调性,求其最值,可得答案.【详解】(1)任意取,设,则, 由,,则,,,即,故,所以函数在上单调递减.(2)由(1)可知:函数在上单调递减,,,故.因此当时,函数的值域为.20.(1)增函数,;(2).【分析】(1)由,求得,得到,根据,求得,即可求得函数是增函数,把不等式转化为,结合函数的单调性,即可求解;(2)由(1)和,求得,得到,令,得到,结合二次函数的性质,即可求解.【详解】(1)因为函数且是定义域为的奇函数,可得,从而得,即当时,函数,满足,所以,由,可得且,解得,所以是增函数,又由,可得,所以,解得,即不等式的解集是.(2)由(1)知,,因为,即,解得,故,令,则在上是增函数,故,即, 此时函数的对称轴为,且开口向上,所以当,函数取得最小值,最小值为,即函数的最小值为.21.(1)88.5万元(2)该公司在甲合作社投入16万元,在乙合作社投入56万元,总收益最大,最大总收益为89万元.【分析】(1)先确定甲乙合作社投入量,再分别代入对应收益函数,最后求和得结果,(2)先根据甲收益函数,分类讨论,再根据对应函数单调性确定最值取法,最后比较大小确定最大值.【详解】解:(1)当甲合作社投入为25万元时,乙合作社投入为47万元,此时两个个合作社的总收益为:(万元)(2)甲合作社的投入为万元,则乙合作社的投入为万元,当时,则,.令,得,则总收益为,显然当时,函数取得最大值,即此时甲投入16万元,乙投入56万元时,总收益最大,最大收益为89万元、当时,则,则,则在上单调递减,.即此时甲、乙总收益小于87万元.又,∴该公司在甲合作社投入16万元,在乙合作社投入56万元,总收益最大,最大总收益为89万元.【点睛】本题考查利用分段函数模型求函数最值,考查基本分析求解能力,属中档题.22.(1);(2)函数在R上单调递减;证明见解析;(3). 【分析】(1)根据奇函数的定义即得;(2)根据函数单调性的定义证明即得;(3)根据函数的单调性及奇偶性可得,进而即得.【详解】(1)函数的定义域为R,因为为奇函数,所以,所以,所以,所以;(2)函数在R上单调递减;下面用单调性定义证明:任取,,且,则,因为在R上单调递增,且,所以,又,所以,所以函数在R上单调递减;(3)因为为奇函数,所以,由得,,即,由(2)可知,函数在R上单调递减,所以,即,解得或,所以t的取值范围为.
版权提示
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)
其他相关资源
河南省2022-2023学年高一数学上学期期中试卷(Word版含解析)
文档下载
收藏
所属:
高中 - 数学
发布时间:2023-02-09 08:16:05
页数:18
价格:¥2
大小:744.36 KB
文章作者:随遇而安
分享到:
|
报错
推荐好文
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
推荐特供
MORE
统编版一年级语文上册教学计划及进度表
时间:2021-08-30
3页
doc
统编版一年级语文上册教学计划及进度表
统编版五年级语文上册教学计划及进度表
时间:2021-08-30
6页
doc
统编版五年级语文上册教学计划及进度表
统编版四年级语文上册计划及进度表
时间:2021-08-30
4页
doc
统编版四年级语文上册计划及进度表
统编版三年级语文上册教学计划及进度表
时间:2021-08-30
4页
doc
统编版三年级语文上册教学计划及进度表
统编版六年级语文上册教学计划及进度表
时间:2021-08-30
5页
doc
统编版六年级语文上册教学计划及进度表
2021统编版小学语文二年级上册教学计划
时间:2021-08-30
5页
doc
2021统编版小学语文二年级上册教学计划
三年级上册道德与法治教学计划及教案
时间:2021-08-18
39页
doc
三年级上册道德与法治教学计划及教案
部编版六年级道德与法治教学计划
时间:2021-08-18
6页
docx
部编版六年级道德与法治教学计划
部编五年级道德与法治上册教学计划
时间:2021-08-18
6页
docx
部编五年级道德与法治上册教学计划
高一上学期语文教师工作计划
时间:2021-08-14
5页
docx
高一上学期语文教师工作计划
小学一年级语文教师工作计划
时间:2021-08-14
2页
docx
小学一年级语文教师工作计划
八年级数学教师个人工作计划
时间:2021-08-14
2页
docx
八年级数学教师个人工作计划