首页

2018年天津市中考数学试题【含答案】

资源预览文档简介为自动调取,内容显示的完整度及准确度或有误差,请您下载后查看完整的文档内容。

1/13

2/13

剩余11页未读,查看更多内容需下载

2018年天津市初中毕业生学业考试试卷数学第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算的结果等于()A.5B.C.9D.2.的值等于()A.B.C.1D.3.今年“五一”假期,我市某主题公园共接待游客77800人次,将77800用科学计数法表示为()A.B.C.D.4.下列图形中,可以看作是中心对称图形的是()A.B.C.D.5.下图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.6.估计的值在()A.5和6之间B.6和7之间 C.7和8之间D.8和9之间7.计算的结果为()A.1B.3C.D.8.方程组的解是()A.B.C.D.9.若点,,在反比例函数的图像上,则,,的大小关系是()A.B.C.D.10.如图,将一个三角形纸片沿过点的直线折叠,使点落在边上的点处,折痕为,则下列结论一定正确的是()A.B.C.D.11.如图,在正方形中,,分别为,的中点,为对角线上的一个动点,则下列线段的长等于最小值的是()A.B.C.D.12.已知抛物线(,,为常数,)经过点,,其对称轴在轴右侧,有下列结论: ①抛物线经过点;②方程有两个不相等的实数根;③.其中,正确结论的个数为()A.0B.1C.2D.3第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.计算的结果等于.14.计算的结果等于.15.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.16.将直线向上平移2个单位长度,平移后直线的解析式为.17.如图,在边长为4的等边中,,分别为,的中点,于点,为的中点,连接,则的长为.18.如图,在每个小正方形的边长为1的网格中,的顶点,,均在格点上.(1)的大小为(度);(2)在如图所示的网格中,是边上任意一点.为中心,取旋转角等于, 把点逆时针旋转,点的对应点为.当最短时,请用无刻度的直尺,画出点,并简要说明点的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程.)19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式(1),得.(Ⅱ)解不等式(2),得.(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)图①中的值为;(Ⅱ)求统计的这组数据的平均数、众数和中位数;(Ⅲ)根据样本数据,估计这2500只鸡中,质量为的约有多少只?21.已知是的直径,弦与相交,. (Ⅰ)如图①,若为的中点,求和的大小;(Ⅱ)如图②,过点作的切线,与的延长线交于点,若,求的大小.22.如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:,.23.某游泳馆每年夏季推出两种游泳付费方式.方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.设小明计划今年夏季游泳次数为(为正整数).(Ⅰ)根据题意,填写下表:游泳次数101520…方式一的总费用(元)150175…方式二的总费用(元)90135…(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?(Ⅲ)当时,小明选择哪种付费方式更合算?并说明理由. 24.在平面直角坐标系中,四边形是矩形,点,点,点.以点为中心,顺时针旋转矩形,得到矩形,点,,的对应点分别为,,.(Ⅰ)如图①,当点落在边上时,求点的坐标;(Ⅱ)如图②,当点落在线段上时,与交于点.①求证;②求点的坐标.(Ⅲ)记为矩形对角线的交点,为的面积,求的取值范围(直接写出结果即可).25.在平面直角坐标系中,点,点.已知抛物线(是常数),定点为.(Ⅰ)当抛物线经过点时,求定点的坐标;(Ⅱ)若点在轴下方,当时,求抛物线的解析式;(Ⅲ)无论取何值,该抛物线都经过定点.当时,求抛物线的解析式.试卷答案 一、选择题1-5:CBBAA6-10:DCABD11、12:DC二、填空题13.14.315.16.17.18.(Ⅰ);(Ⅱ)如图,取格点,,连接交于点;取格点,,连接交延长线于点;取格点,连接交延长线于点,则点即为所求.三、解答题19.解:(Ⅰ);(Ⅱ);(Ⅲ)(Ⅳ).20.解:(Ⅰ)28.(Ⅱ)观察条形统计图,∵,∴这组数据的平均数是1.52.∵在这组数据中,1.8出现了16次,出现的次数最多,∴这组数据的众数为1.8. ∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,∴这组数据的中位数为1.5.(Ⅲ)∵在所抽取的样本中,质量为的数量占.∴由样本数据,估计这2500只鸡中,质量为的数量约占.有.∴这2500只鸡中,质量为的约有200只。21.解:(Ⅰ)∵是的直径,∴.∴.又∴,∴.由为的中点,得.∴.∴.(Ⅱ)如图,连接.∵切于点,∴,即.由,又,∴是的外角,∴.∴.又,得.∴. 22.解:如图,过点作,垂足为.则.由题意可知,,,,,.可得四边形为矩形.∴,.在中,,∴.在中,,∴.∴.∴.答:甲建筑物的高度约为,乙建筑物的高度约为.23.解:(Ⅰ)200,,180,.(Ⅱ)方式一:,解得.方式二:,解得.∵,∴小明选择方式一游泳次数比较多.(Ⅲ)设方式一与方式二的总费用的方差为元. 则,即.当时,即,得.∴当时,小明选择这两种方式一样合算.∵,∴随的增大而减小.∴当时,有,小明选择方式二更合算;当时,有,小明选择方式一更合算.24.解:(Ⅰ)∵点,点,∴,.∵四边形是矩形,∴,,.∵矩形是由矩形旋转得到的,∴.在中,有,∴.∴.∴点的坐标为.(Ⅱ)①由四边形是矩形,得.又点在线段上,得.由(Ⅰ)知,,又,,∴. ②由,得.又在矩形中,,∴.∴.∴.设,则,.在中,有,∴.解得.∴.∴点的坐标为.(Ⅲ).25.解:(Ⅰ)∵抛物线经过点,∴,解得.∴抛物线的解析式为.∵,∴顶点的坐标为.(Ⅱ)抛物线的顶点的坐标为.由点在轴正半轴上,点在轴下方,,知点在第四象限.过点作轴于点,则.可知,即,解得,.当时,点不在第四象限,舍去. ∴.∴抛物线解析式为.(Ⅲ)由可知,当时,无论取何值,都等于4.得点的坐标为.过点作,交射线于点,分别过点,作轴的垂线,垂足分别为,,则.∵,,∴.∴.∵,∴.∴.∴,.可得点的坐标为或.①当点的坐标为时,可得直线的解析式为.∵点在直线上,∴.解得,.当时,点与点重合,不符合题意,∴.②当点的坐标为时,可得直线的解析式为.∵点在直线上,∴.解得(舍),. ∴.综上,或.故抛物线解析式为或.

版权提示

  • 温馨提示:
  • 1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
  • 2. 本文档由用户上传,版权归属用户,莲山负责整理代发布。如果您对本文档版权有争议请及时联系客服。
  • 3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
  • 4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服vx:lianshan857处理。客服热线:13123380146(工作日9:00-18:00)

文档下载

发布时间:2023-02-08 22:37:04 页数:13
价格:¥5 大小:1.17 MB
文章作者:送你两朵小红花

推荐特供

MORE